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Review

INTRODUCTION

During the past century, medicine experienced a remarkable 
growth in the knowledge of anatomy, physiology and pathology, 
leading to the development of new therapies. In the background 
of these improvements, there have been in vitro models using 
primary cell cultures and in vivo models using animal studies 
that have revealed the complex pathophysiology and human-re-
lated conditions [1,2]. However, there are gaps between physiol-
ogy of human organs and in vitro cultures systems or animal 

models (typically mice) used to mimic this physiology. For in-
stance, primary cells quickly lose their tissue-specific functions 
when they are removed from living organisms and kept in stan-
dard culture conditions [1]. Thus, the investigation of single cells 
in highly artificial situations cannot reflect the characteristics of 
whole tissues [3]. On the other hand, animal models with in-
duced human diseases are helpful models, but not completely 
accurate since pathologies are actually different among species. 
As a result, animal experiments suffer from significant biological 
differences, difficulty of translating animal–human data, pro-
longed processing time and costs, and ethical considerations [2].

During the past decade, several multidisciplinary research 
groups have engineered new methods to mimic the complexity 
of intra- and inter-organ interactions using artificial microenvi-
ronments called microfluidic systems. These systems allow the 
integration of human cells or tissues to imitate physiological 
conditions and functions of tissues and organs in a three-dimen-
sional (3D) microenvironment, and replace or supplement ani-
mal experiments in disease-relevant tests or models [4,5]. Addi-
tionally, microfluidic systems present a variety of clinical and 
practical advantages for applications in medical field due to their 
extremely small sizes providing minimally invasive procedures, 
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low power and reagent consumption, fabrication processes with 
high reproducibility, and low cost per device, in conjunction 
with their multiple functionalities and compatibility with very 
large-scale integration electronics. High throughput screening 
and automation also becomes possible by the introduction of 
microfluidic systems [6]. In this review, we intend to help clini-
cians understand the basics of microfluidics by reviewing the re-
cent literature about microfluidic devices in the field of otorhi-
nolaryngology.

OVERVIEW OF MICROFLUIDICS

Microfluidics has been defined as the science and technology of 
systems that process or manipulate small volumes (10–12–10–6 li-
ters) of fluids using channels with dimensions of tens to hun-
dreds of micrometers [1,7]. At this length scale, the behavior of 
fluids is different compared to the intuitive macroscale. The flow 
is dominated by viscosity, instead of inertia, changing the gov-
erning physical effects of fluids in unique ways [8]. In contrast to 
macroscale where flow is often turbulent, at the microscale flow 
is often laminar with fluid traveling as consecutive layers that 
don’t mix and move in a smooth and predictable direction (Fig. 
1A). Due to laminar flow, diffusive mixing dominates over con-
vective mixing (Fig. 1B). Another important effect is that surface 

area relative to volume increases considerably, making capillari-
ty force more significant than gravity inside microchannels, and 
making surface tension an important effect to consider [9].

These effects have been exploited to generate a wide variety 
of microfluidic devices for different applications. For instance, 
predictive laminar flow and diffusion can be used to generate 
concentration gradients across a culture chamber to generate a 
variable environment for chemotaxis studies [10-13]. Having a 
laminar flow can amplify the responsiveness of cells to a stimuli, 
by providing a constant inflow of stimulant closer to cells [14]. 
Surface tension effect can be finely controlled to generate mono-
disperse aqueous droplets immersed in oil in a high throughput 
manner which can be used for cell encapsulation, drug delivery 
or particle generation [8,15]. Capillarity phenomena can be used 
to passively pump fluid into microchannels [16,17]. Passive pump-
ing is one of the simplest pumps and a basic component that can 
reduce the overall system size and maintain a stable and constant 
flow rate during long-term operation. Therefore, it has been wide-
ly studied in many applications, such as sensors, separators, mix-
ers, and reactors [18].

Techniques for fabrication of microfluidic devices are already 
well established. Similar microfabrication techniques developed 
for the semiconductor industry are used to manufacture micro-
fluidic devices. While a number of materials, including glass, ther-
moplastic polymers and hydrogels have been used for construct-
ing microfluidic devices [19-24], silicone rubber or polydimeth-
ylsiloxane (PDMS) remains the material of choice for making 
microfluidic devices due to a relative ease and high fidelity fab-
rication, and because of its excellent biocompatibility [25,26]. 
PDMS has good oxygen diffusivity, 3.25×10−5 cm2/s [27], which is 
slightly better than oxygen diffusivity in water, 1.96×10−9 cm2/s 
[28]. This creates a suitable environment for long-term cell cul-
tures inside PDMS-based microfluidic devices, even for cells with 
a high oxygen consumption rate (e.g., hepatocytes or pancreatic 
islets), without the need to deliver oxygen externally [14]. Fur-
thermore, PDMS is optically transparent, enabling microscopic 
assessment of cell morphology or function over time. PDMS is a 
compliant material––an important feature that enables fabrication 
of microfluidic devices with automated, computer-controlled 
microvalves. These microvalves rely on fabrication of flexible thin 

  Microfluidics can be used to guide small (10–12–10–6 liters) vol-
umes of liquid through channels with dimensions of tens to 
hundreds of micrometers.

  Microfluidic devices may be used to create three-dimensional 
cell cultures and may be automated to exercise spatiotemporal 
delivery of stimuli to these cultures.

  Microfluidic devices may contain different cell types for mod-
eling heterotypic interactions within the same organ/tissue or 
between different organ models.

  Microfluidic devices may contain primary tissue for personal-
izing treatment options for patients.
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Fig. 1. Characteristics of flow in microfluidic devices. Laminar flow (A) and diffusion (B) of molecules inside microchannels are demonstrated.
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membranes that can be pneumatically actuated to block or per-
mit flow in the microfluidic channels on demand [29]. Thus, PD-
MS-based microfluidic devices may be used to precisely control 
temporal delivery or metering of fluid over long periods [16].

To construct a PDMS microfluidic device, a master mold has 
to be fabricated first, to then cast PDMS replica with channels 
imprinted on the silicon rubber. The whole fabrication process, 
from mold to PDMS replica is described briefly and illustrated 
in Figs. 2 and 3. The first step is to design the microfluidic device 
in a computer using CAD (computer-aided design) software. 
Then, the device design is transferred to a silicon wafer (mold) 

using standard photolithography techniques. In this step, the sili-
con wafer is covered with a thin layer (can be from 1 to hundreds 
of micrometers, based on the specific application) of photoresist 
and then the designed is patterned on the photoresist using a ul-
traviolet light source. Unexposed photoresist is removed, result-
ing in the master mold. A liquid mixture of PDMS prepolymer 
and its curing agent is poured into the mold and heated in an 
oven to crosslink (harden) the PDMS. This process imprints the 
designed pattern on the bottom of the PDMS. After peeling the 
PDMS out of the mold, inlets and outlets are punched to con-
nect the device to a pump or drainage system. Next, the PDMS 

Fig. 2. Process of manufacturing a microfluidic device. A silicon wafer (A) is coated with photoresist (B) to transfer the design of a microfluidic 
device using standard photolithography techniques (C). The mold (D) is used as the frame to shape a polydimethylsiloxane (PDMS) mixture 
(E) and baked to harden it (F). Cured PDMS is cut (G) and peeled off from mold (H). After punching inlets and outlets (I), PDMS device and a 
glass substrate are treated with oxygen plasma (J) to bond both surfaces (K) and end up with the final microfluidic device (L). 
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device is bonded to a glass substrate that will serve as bottom of 
the microchannels by treating both surfaces with oxygen plasma. 
The plasma treatment oxidizes both surfaces and, upon contact, 
creates an airtight seal for the fluid microchannels [30]. Several 
PDMS layers can be assembled to create a more complex micro-
fluidic device for different applications [31]. In recent years, the 
field of microfluidics has grown rapidly, and the advances made 
have generated great research interest in biology and medicine. 
Microfluidic devices for health care are highly anticipated in the 
following areas:

Personalized medicine
It is generally accepted that medications should better meet the 
needs of individual patients and their responses to treatment. 
There are reports of microfluidic devices that are populated with 
patient-derived cells. Such microfluidic devices have the poten-
tial to reproduce more accurately a physiological environment, 
allowing the formation of 3D organoids with patient-derived 
cells. Organoids can be exposed to different concentrations of a 
drug to evaluate efficacy in order to predict patient-specific re-
sponses and find a personalized therapy [32].

Early diagnostics
In almost all common diagnostic assays, incubation, labeling and 
washing are important steps than can be time consuming and 
expensive, due to large amounts of solutions needed to run as-
says in bulk. Due to the properties and size of microfluidic de-
vices, these steps can be performed in a faster and cheaper way. 
Incubation times are reduced due to a fast transport of molecules 
in small channels. A multi-step assay can be automated incorpo-
rating microvalves on a microfluidic system and a personal com-
puter. Since microchannels have very small volumes, the 
amount of solutions required for each assay is reduced. This will 
help in reducing the mortality rate and in controlling the propa-
gation of life-threatening diseases such as malaria, HIV and 

AIDS (human immunodeficiency virus infection and acquired 
immune deficiency syndrome), measles, tuberculosis, lower re-
spiratory conditions and so on [33-35].

High throughput mass screening
Microfluidics is becoming increasingly appealing to mass screen-
ing due to recent trends in the biological sciences necessitating 
exceedingly large and comprehensive experiments [36]. Paral-
lelization is possible in microfluidic devices, allowing to incorpo-
rate multiple assays in a single microfluidic device [37]. Variants 
of microfluidic and microfabrication approaches have been in-
strumental for sequencing human genome and analyzing bio-
markers of diseases. Therefore, microfluidic devices can be used 
for point-of-care testing and on-time diagnosis of several diseas-
es [38-43].

Disease models or animal/patient-surrogates during drug  
development
Major advances in human pluripotent stem cells (PSCs) have en-
abled the generation of 3D, in vitro, self-renewing, and self-orga-
nizing stem cell clusters in organoids. Organoid models derived 
from human PSCs can bridge the gap between traditional 2D 
culture models and animal studies by reproducing the specific 
traits of tissues or organs. Stem cells and patient-induced PSCs 
could be a great tool for studying the mechanisms of human dis-
ease and drug development, being a currently growing research 
field (Fig. 4) [44].

CURRENT STUDIES ABOUT MICROFLUIDIC 
DEVICES IN OTORHINOLARYNGOLOGY

Microfluidics technologies occupy an important niche between 
in vitro culture systems that are too simplistic for modeling hu-
man diseases and animal models that are too complex to untan-

Fig. 3. Schematic depicting mold fabrication by photolithography and polydimethylsiloxane (PDMS) replicas fabrication by soft lithography. A 
clean silicon wafer (A) is coated with photoresist (B) and microfluidic device design is transferred by ultraviolet (UV) exposure (C). Unexposed 
photoresist is removed using a developer (D) to end up with the final mold (E). A PDMS mixture is poured on top of the mold (F), baked at 
80°C for 1 hour, to then peel off the device from the mold. PDMS device and a glass substrate are plasma treated (G) and bond together to 
obtain the final device (H). 
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gle mechanisms that underlie disease progression. In addition, 
microfluidic devices offer excellent prospects for miniaturizing, 
expediting and automating assays for disease diagnosis. In par-
ticular, considering that otorhinolaryngology field is small but 
complex and diverse, filled with specialized tissues and func-
tions, microsystems and microfluidic devices offer tremendous 
potential to improve the field.

For example, microfluidic aqueous-aqueous interface with an 
ultra-low interfacial tension was reported to respond to sound 
of different frequencies and amplitudes [45], which could repre-
sent a new type of cochlear implant to sense and transmit vibra-
tions induced by sound. On the other hand, microfluidic devices 
populated with cells from patients with allergic rhinitis, like an 
in vitro model of human nasal mucosa, could be used to mimic 
allergic reactions or drug responses in real-time. Microfluidic de-
vices with nasal epithelial cells or immunocytes could be per-
fused with allergens or drugs to reflect the response of such cells 
in terms of quantity of cytokine secretion.

Rhinology
Asthma and allergic rhinitis are caused by exaggerated immune 
responses, including the formation of specific immunoglobulin E 
(IgE)-antibodies upon allergen exposure, the formation of IgE- 
antibodies that bind to mast cells and basophils, and the activa-
tion of immune cells by allergens [46]. The skin prick test is an 
important diagnostic tool for allergen sensitization, but it is im-
plicated in systemic reactions and drug interactions. In contrast, 
in vitro serum testing for specific IgE antibodies is convenient, 

completely removing the risk of an anaphylactic reaction [47]. 
This test is usually performed using the well-known enzyme-
linked immunosorbent assay (ELISA). A previous report shows 
a comparison between a microfluidic cartridge–based system 
using a colorimetric ELISA test, to a skin prick test to diagnose 
inhaled allergen sensitization in patients. The microfluidic device 
was covered with a nitrocellulose membrane containing an anti-
genic protein and was placed in the center of the cartridge, where, 
upon deposition of sample in the cartridge, IgE present in serum 
bonded to the antigenic proteins. Adding a substrate resulted in 
a colorimetric reaction, where color intensity was proportional 
to amount of antigen-antibody complexes in the membrane. Se-
rum-specific IgE tests using the microfluidic cartridge–based sys-
tem showed moderate to high accuracy in diagnosing house dust-
mite sensitization (sensitivity, 48%–77%; specificity, 64%–95%) 
[48,49].

Another important subject is allergies detection. A common 
method for this is allergy blood testing, where allergen-specific 
antibodies are detected on serum using multiple immunoassays, 
one for each allergen. A research group used commercially avail-
able microarrays to demonstrate an integrated microfluidic sys-
tem that automates the entire process of allergy detection, in-
cluding hybrid detection, mixing, reagent delivery, and washing. 
Using their microfluidic platform, operating time was reduced 
by about 30% compared to manual processing, and the sample 
and reagent consumption was reduced by 25% [50]. They sug-
gested that microfluidic array systems overcome the limitations 
of existing technologies by offering ease of use, fast analysis, 

Fig. 4. Schematic illustration of organoid models. Microfluidic devices containing patient-derived cells could be used to evaluate drug efficacy, 
eliminating the need for animal models and enabling the practice of personalized medicine.
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minimal sample requirements, reduced waste generation, and 
minimal exposure to hazardous substances [38,51].

Basophils play an important role in IgE-mediated allergic re-
actions caused by re-exposure to certain allergens. Similar to 
mast cells, basophils have high-affinity receptors (FcεRI) to IgE-
antibodies on their surface [52]. After activation, these cells de-
granulate and release different immune modulators, such as his-
tamine, by cross-linking allergens to IgE-antibodies (Fig. 5) [53]. 

Because basophils can be more easily separated from blood than 
mast cells in tissues, a functional cell-based assay, the basophil 
activation test (BAT), is used to assess IgE-mediated allergic re-
sponses by measuring released allergen responses, such as hista-
mine, or the expression of the markers CD63 and CD203c at 
the cell surface (Fig. 6) [54]. In addition, BAT can be used to 
monitor the clinical response to allergen-specific immunothera-
py and other immunomodulatory treatments [55,56]. However, 

Fig. 6. Principles of basophil activation test in microfluidic devices. (A) The dye-loaded commercial basophils are sensitized using a patient's 
serum-specific immunoglobulin (Ig). After challenge with an allergen, the dye fluorescence is secreted from the basophils and analyzed in the 
detection chamber. (B) The microfluidic device captures basophils with anti-CD203c antibody and measures the level of CD63 expression in 
the captured allergen-exposed basophils.

Fig. 5. Schematic illustration of basophil activation. Resting basophils (A) release various immune modulators, such as histamine, and express 
CD63 and CD203c at the cell surface after activation (B) by cross-linking allergens and immunoglobulin E (IgE)-antibodies. 
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this test is flow-cytometry-based, making it time consuming and 
costly, and technical requirements for performance are difficult 
to meet clinically [56].

To measure allergic degranulation in living cells, previous stud-
ies have demonstrated an integrated platform called lab-on-a-disk 
(LOAD), a centrifugal microfluidic setup that looks like a CD, 
that can measure degranulation or exocytosis from basophils [35]. 
In this device, a specific dye (acridine orange) can be loaded into 
basophilic granules to determine the degree of degranulation 
compared with a control value. Since the LOAD device works 
by spinning, centrifugal force drives reagents into different cham-
bers at specific time points for reaction development, without the 
need of a micro pump for liquid handling. For this test, basophils 
were exposed to acridine orange to label granulocytes and allow 
the observation of the degranulation process. After basophils 
sensitized with patient serum (including specific IgE-antibodies) 
were exposed with the suspected allergens, basophils secreted 
the granules contents into the extracellular space. The fluores-
cence intensity of the media was analyzed to assess the effect of 
allergen on basophils. That LOAD platform demonstrated some 
advantages over the standard test, such as shorter analysis time, 
improved sensitivity, simple procedure, lower cost, and reduced 
consumption of samples and reagents (Fig. 6A) [57,58]. 

Aljadi et al. [59] designed a device that captures basophils di-
rectly from whole blood, as an alternative way to assess effect of 
allergens on a blood sample. CD63 is located in the membranes 
of intracellular secretory granules in resting basophils. After 

stimulation by FcεRI, secretory granules fuse with the plasma 
membrane and CD63 is expressed on the surface of the degran-
ulating basophils [60]. To capture basophils, Aljadi et al. [59] 
coated the surface of a microfluidic device with anti-CD203c 
antibody to capture activated basophils after exposure of sam-
ples to allergens (Fig. 6B). Then, CD63 expression was assessed 
in captured basophils by fluorescence and directly compared to 
a healthy control. A conventional flow cytometry analysis of ba-
sophil activation was also performed for comparison. The CD63 
expression in the anti-FcεRI-activated basophils captured by the 
microfluidic chip was significantly higher in allergic patients 
than in the healthy control group (P=0.03). In addition, the re-
sults obtained using the microfluidic platform did not differ sig-
nificantly from flow cytometry results.

It is known that nasal mucosa is the first line of defense 
against air pollutants and microorganisms that can start an aller-
gic or immune reaction, among other diseases. There is a high 
interest in studying nasal mucosa because it could reveal the 
pathophysiology of many respiratory diseases [61]. In 2017, Na 
et al. [62] introduced a new in vitro model of human nasal mu-
cosa by imitating the complex cell-extracellular matrix (ECM) 
interaction and structure under air–liquid interface culture con-
ditions. The authors designed an microfluidic device with three 
chambers: a ECM chamber in the middle, a nasal epithelial 
monolayer on one side and an endothelial monolayer on the 
other side (Fig. 7). During cell culture, nasal layer formed gland-
like structures, successfully mimicking in vivo nasal mucosa. The 

Fig. 7. Microfluidic device to mimic the structure of nasal mucosa. (A) Nasal mucosa structure has three layers (epithelial layer, extracellular 
matrix, and vascular layer). (B) Each layer is imitated using an air–liquid channel, gel (collagen or Matrigel)-filled channel, and liquid-covered  
channel, respectively. ECM, cell-extracellular matrix; 3D, three-dimensional.
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function of the mucous glands was identified by immunofluores-
cent staining of the mucin protein (MUC5b) and the gland de-
velopment marker (Sox9).

Cilia movement and the production of mucus by the nasal 
mucosa are a unique defense mechanism to protect the airway 
from external stimulants [63]. In a previous study, in vitro dif-
ferentiated human nasal epithelial cells were incorporated into a 
microfluidic device for real-time monitoring of cilia beating fre-
quency, as way to test the response of the human airway to drugs 
or toxic agents [64]. Cilia beating frequency was monitored by 
placing a cilia-embedded microchip on the microscope (Fig. 8) 
The responsiveness of the ciliated cells to dynamic exposure of 
formaldehyde gas was monitored and analyzed simultaneously. 
The researchers reported that formaldehyde had an irritating ef-
fect on epithelial cells and that the frequency of ciliary beats 
could be a sensitive indicator of toxic inhalation in human cells.

The developed systems and experimental models are more 
realistic for clinical applications than conventional cell culture 
techniques considering the possibility to incorporate different 
cell types and components, and the ability to perform immunos-

taining in situ. These types of models developed in microfluidic 
devices could be used as more accurate physiological model to 
study diseases related to rhinology.

Otology
One of the main targets of drug delivery for this disorder is sen-
sory neurons in the cochlea [65]. However, treatment of hearing 
impairment is challenging because local entry of systemic circu-
lating drugs is hampered by the blood–cochlear barrier, with co-
chlear blood supply estimated to represent less than one-mil-
lionth of total cardiac output in humans [66]. Additionally, many 
of the relevant drugs and drug candidates cause significant side 
effects when delivered systemically. For this reason, there is an 
interest on delivering drugs directly into the cochlea; in this way, 
side effects could be minimized, there could be an improved ac-
cess to cells of interest and a significantly increase of target 
specificity [67].

Currently, access to the inner ear is typically obtained using a 
middle ear delivery system in which a drug is deposited on the 
round window membrane (RWM) in a reservoir, such as a gel or 
microparticle formulation, and then transported through the 
membrane into the cochlea. However, wide patient-to-patient 
variability in the mechanical and transport properties of the 
RWM causes a high degree of uncertainty and variability in 
drug concentration and delivery profiles [68]. More direct meth-
ods, such as the use of osmotic pumps, provide a limited deliv-
ery period and do not allow real-time control of the delivery 
profile [69]. Therefore, a new approach based on canalostomy 
and active micropumps is being considered to reduce down-
stream hydraulic resistance and enable deep penetration of 
medication into the apical zone. Nevertheless, because the vol-
ume of the scalar tympani is about 30 μL and the hair cells in-
side the Corti organ are very delicate, rapid infusion of fluid into 
this space can increase pressure and cause permanent damage 
[65]. To prevent those complications, additional surgical entry 
points are necessary, which can increase the risk and difficulty 
of surgery (Table 1).

Recently, reciprocating micropumps based on microfluidics/
microelectromechanical systems (MEMS) technologies have 
been developed for safe and effective drug delivery, allowing di-

Fig. 8. Real-time monitoring of cilia beating frequency in microfluidic 
device. In vitro differentiated human nasal epithelial cells are incor-
porated into microfluidic chips for real-time monitoring of the cilia 
beating function. PDMS, polydimethylsiloxane. 
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Table 1. The merits and demerits of direct inner-ear drug delivery methods

Delivery method Merit Demerit

Intratympanic injection Clinically accepted, minimally invasive Rapid clearance through Eustachian tube, relies 
on diffusion through RWM

Passive release degradable reservoir (drug) at 
RWM

Prolonged residual time at RWM, minimally  
invasive, currently in clinical trials

Dependent on diffusion through RWM 
Variability from patients to patients

Intracochlear osmotic pump Extended drug delivery to inner ear fluid Lack of control over release profile, highly invasive
Intracochlear active pumping with canalostomy Superior pharmacokinetic distribution in cochlea Highly invasive with multiple surgical site
Cochlear prosthesis (implant)-mediated delivery Integrated with well-established therapy,  

enhances clinical benefit of implant
Limited to cochlear implant candidates only

RWM, round window membrane.



Hwang SH et al. Microfluidic Devices in the Field of Otorhinolaryngology    37

rect injection into the inner ear with low mechanical and fluid 
fluctuations in the cochlea [65]. This is achieved by periodically 
infusing and withdrawing a constant volume of fluid in a pro-
cess designed to improve drug mixing and peak transport. The 
infusion part of the cycle lasts a few seconds and can pump an 
amount lower than 1 μL. The rest of the cycle lasts for several 
minutes and returns the mixture of endogenous perilymph and 
drug back into the device (Fig. 9). To prevent damage caused by 
flow, the infusion withdrawal cycle can be carried out at very 
low flow rates and deliver drug solutions without causing net 
volume changes. In addition, using a single cannula for both in-
fusion and withdrawal can reduce biofouling by maintaining 
positive pressure at the outlet during the whole cycle [67]. 

Animal models have been used to analyze the efficacy and 
safety of reciprocating micropumps. The ionotropic receptor an-
tagonist DNQX (6,7-dinitroquinoxaline-2,3-dione) is used as a 
physiological indicator of drug location, and auditory brain stem 

response (ABR) measurements at decreasing frequencies can be 
used to estimate how far the drug has moved along the tono-
topic axis. Distortion product otoacoustic emissions (DPOAE), 
on the other hand, is not sensitive to DNQX and is useful as a 
control to provide an estimate of the damage caused by surgery 
[70]. In previous studies, DPOAE was not significantly affected 
by surgery or device activation, and ABR threshold elevation 
was reversibly induced by DNQX. Those results indicate that the 
reciprocating drug delivery devices offer significant safety and 
effectiveness over a short period of time [70-72]. 

Dizziness and imbalance are common in older people and can 
significantly affect quality of life. Dizziness interferes with the 
daily activities of many people older than 70 years [73]. People 
suffering from vestibular-related disorders could benefit from 
the development of vestibular nerve prostheses, which bypass 
the dysfunctional elements in the vestibular pathway using arti-
ficial stimuli. Recent work has tested an alternative approach to 

Fig. 9. Schematic illustration of reciprocating system and sequential operation. The red pump indicates an actively working pump in each indi-
vidual step (alphabetical order, A-E). The blue points near the cannula indicate the drug spread by diffusion. Light color changes represent 
the drug diluted by perilymph.
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angular velocity sensing based on the way the natural vestibular 
semicircular canal works, whereby the inertial mass of a fluid is 
used to modify the sensing structure during rotation [74]. The 
device was manufactured using a commercially available MEMS 
process. The microfluidic channel consisted of an etched glass 
layer sandwiching a bulk-microfabricated silicon substrate con-
taining an etched structure. The size of the device was 6 mm× 
6 mm, including the pad area, and it used only 300 μW at 2 V 
and showed an angular velocity sensitivity of less than 1°/sec, 
which is similar to that of the natural vestibular system [74]. This 
result suggested the potential for the near-term development of 
a fully functional vestibular implant.

Head and neck
Head and neck cancers are the sixth most common cancers in 
the world, with an incidence of about 600,000 cases each year. 
Despite advanced surgical and medical treatment strategies, the 
overall survival rate of patients has remained unchanged for de-
cades [75,76]. One reason for that static survival rate from head 
and neck cancers is considered to be the significant genetic het-
erogeneity of the disease. In particular, metastatic lesions can 
contain different genetic mutations that cause growth, potential 
therapeutic resistance, and relapse [77]. Traditional tissue biop-
sies can provide histological definition and show the genetic pro-
file of a cancer, but they can be too difficult or invasive to per-
form in recurrent or anatomically dangerous lesions or too risky 
for patients to experience sequentially. In addition, “spatial het-
erogeneity” can produce sampling bias, making samples inade-
quate because they do not represent the entire mutation [78].

Recent studies focused on providing intact single cells that 
can be further characterized to provide protein expression- and 
gene-level data. Circulating tumor cells (CTCs) are cells derived 
from tumor masses (primary or metastatic) that have entered 
the vascular circulation. They represent metastatic seeds and 
provide a window into metastasis. CTCs are thus likely to pro-
vide important information about the metastatic cascade and 
tumor heterogeneity and chemistry [77]. Exosomes are small 
(diameter 50–100 nm) vesicles secreted from various mammali-
an cells. Because exosomes are released through fusion between 
the endosome membrane compartment and the plasma mem-
brane, extracellular and intracellular biomarkers can reveal the 
type and state of the cell of origin (Fig. 10). Tumor cell-derived 
exosomes can activate tumor progression and metastasis, and 
they contain specific messages that have been investigated by 
diagnostic and therapeutic researchers [79].

Liquid biopsies provide an opportunity to detect, analyze, 
and monitor cancer in various body drainages, such as blood or 
saliva, instead of cancer tissue fragments. They consider biologi-
cal matrices such as CTCs, cell-free nucleic acids, exosomes, or 
“tumor-educated platelets.” In addition to offering a noninva-
sive or minimally invasive procedure, liquid biopsies are also ex-
pected to offer a better view of tumor heterogeneity than tradi-

tional biopsies and be able to monitor the evolution of cancer in 
real time. However, the half-life of CTCs is estimated to be less 
than a few hours due to the shear force of turbulent blood flow 
and the immunological monitoring of circulation [77]. Because 
the yield of CTCs is tens to hundreds per milliliter of blood, 
they account for <0.004% of all monocyte cells, or approxi-
mately 1 in 1 billion circulating cells. Therefore, enriching and 
sequestering CTCs are important challenges [77]. Also, conven-
tional methods for isolating and analyzing high-purity exosomes 
in clinical settings have many disadvantages, including low yield 
and purity, long processing time, high cost, and difficulty of 
standardization [80].

Microfluidic devices have enabled advances in the purification 
and analysis of liquid biopsy components [81]. These devices 
have been designed to capture CTCs by surface markers or iso-
late them based on physical properties (for example size).  En-
riched cells undergo an antibody staining protocol to accurately 
identify CTCs. The accepted definition of CTCs in head and 
neck cancers is cell staining that is positive for epithelial markers 
and DAPI (4′,6-diamidino-2-phenylindole; nucleus) and nega-
tive for CD45 (a leukocyte marker). Cytokeratin 8, 18, 19 or 20 
also appear to be reliable in head and neck cancers. In addition, 

Fig. 10. Circulating biomarkers released from cancer tissue. Apop-
totic cancer cells release biomarkers (circulating tumor cells [CTCs], 
circulating tumor DNA [ctDNA], and exosomal microRNA [miRNA]) 
into blood, whereas necrotic tumor cells shed biomarkers into saliva. 
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markers for mesenchymal (N-cadherin or vimentin) or stem cell 
(CD133) phenotypes have been applied [82,83]. Numerous 
marker-based assays using microfluidic techniques are available 
and have been reported previously [84,85]. Based on the micro-
fluidic technique, automated exosome separation into a single 
device avoids multi-step protocols that require multiple instru-
ments and skilled technicians. Shorter isolation times (10–20 
minutes of treatment time) and low sample consumption en-
hance biosafety and enable high throughput screening in many 
patient populations [77].

Patient-derived xenograft models offer the advantage of close-
ly reproducing human in vivo models for various therapeutic 
and test purposes. However, it can take up to 6 months to pro-
duce xenografts, the process costs thousands of dollars and uses 
a lot of animals, and the tumor is inevitably affected by the ro-
dent host [86]. Microfluidic culture of patient-derived tumor tis-
sue has the potential to more closely regenerate the tumor mi-
croenvironment [87]. By continually delivering nutrients and 
removing waste from tissues while maintaining complex multi-
cellular structures without rodent factors, microfluidic technolo-
gy offers unique properties that could make it a platform for 
preclinical biological investigations [88]. In previous microfluidic 
irradiation models with metastatic lymph nodes and primary tu-
mors from different patients, immunohistochemistry expression 
profiles relevant to cell death and proliferation markers were 
measured to determine an individual’s tumor response to irradi-
ation. The results showed clear inter- and intra-patient variability 
in response to irradiation when measuring a variety of parame-
ters, which offered the potential to predict patient responses and 
could be helpful in predicting treatment effectiveness and quali-
ty of life, as well as offering cost savings and improved patient 
care [89].

Additionally, based on the concept that the efficacy of immu-
notherapy is related to immune cell migration to cancer cells, a 
humanized in vitro microfluidic chip assay was manufactured to 
test immunotherapeutic drugs against patient samples (Fig. 11) 
[90]. In that device, the patient’s own serum was used instead of 
the commonly used fetal bovine serum to mimic the in vivo in-
teraction between cancer and immune cells. Immune cell migra-
tion toward cancer cells was used as a parameter for the efficacy 
of immunotherapy against cancer cells [76]. Interestingly, the re-
sults indicated between-patient variability in two agents that in-
duce immune cell migration toward cancer cells. Thus, this assay 
could be used to predict the efficacy of immunotherapeutics for 
individual patients [90].

CONCLUSION

In this review, we provided a brief explanation of techniques for 
fabricating microfluidic devices and offered examples of such 
devices being applied in the field of otorhinolaryngology. Over-

all, microfluidic systems represent a novel means of recapitulat-
ing complex human tissue microenvironments and are increas-
ingly being used for personalizing patient treatment.  Therefore, 
this technology deserves to be on the radar of clinicians/scien-
tists in otorhinolaryngology.
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