Lack of Correlation of Sinonasal and Otologic Reported Symptoms With Objective Measurements Among Patients With Primary Ciliary Dyskinesia: An International Study

Yin Ting Lam1,2, Jean-François Papon3,4, Mihaela Alexandru3,4,5, Andreas Anagiotos6, Miguel Armengot7,8,9, Mieke Boon10, Andrea Burgess11, Nathalie Caversaccio12, Suzanne Crowley13, Sinan Ahmed D. Dheyauldeen14,15, Nagehan Emiralioglu16, Ela Erden17, Christine van Gogh18, Yasemin Gokdemir17, Onder Gunaydin19, Eric G. Haarman20, Amanda Harris21,22, Isolde Hayn23, Hasnna Ismail-Koch11, Bulent Karadag17, Céline Kempeneers24, Sookyoung Kim25, Natalie Lorent26, Uğur Özceلك27, Charlotte Pioch28, Anne-Lise ML Poirrie27, Ana Reula29,30, Jobst Roehmel20, Panayiotis Yiallouros29,30, on behalf of the EPIC-PCD team.*

1Institute of Social and Preventive Medicine, University of Bern, Bern, Switzerland
2Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
3Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris-Saclay, Service d’ORL, Hôpital Bicêtre, Le Kremlin-Bicêtre, France
4Faculté de Médecine, Université Paris-Saclay, Le Kremlin-Bicêtre, France
5Département de Génétique Médicale, Sorbonne Université, Inserm UMR S933, Maladies Génétiques D’expression Pédiatrique, Hôpital Armand Trousseau, Paris, France
6Department of Otolaryngology, Nicosia General Hospital, Nicosia, Cyprus
7Department of Otorhinolaryngology, and Primary Ciliary Dyskinesia Unit, La Fe University and Polytechnic Hospital, Valencia, Spain
8Medical School, Valencia University, Valencia, Spain
9Molecular, Cellular and Genomic Biomedicine Group, IIS La Fe, Valencia, Spain
10Department of Paediatrics, University Hospitals Leuven, Leuven, Belgium
11Primary Ciliary Dyskinesia Centre, Southampton Children’s Hospital, Southampton NHS Foundation Trust, Southampton, UK
12Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Bern, University of Bern, Bern, Switzerland
13Paediatric Department of Allergy and Lung Diseases, Oslo University Hospital, Oslo, Norway
14Department of Otorhinolaryngology, Head and Neck Surgery, Oslo University Hospital, Oslo, Norway
15Faculty of Medicine, University of Oslo, Oslo, Norway
16Department of Pediatric Pulmonology, Hacettepe University, School of Medicine, Ankara, Turkey
17Department of Pediatric Pulmonology, Marmara University, School of Medicine, Istanbul, Turkey
18Department of Otorhinolaryngology-Head and Neck Surgery, Amsterdam UMC, Amsterdam, The Netherlands
19Department of Otorhinolaryngology, Hacettepe University School of Medicine, Ankara, Turkey
20Department of Pediatric Pulmonology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
21Southampton Children’s Hospital, University of Southampton, Southampton, UK
22Primary Ciliary Dyskinesia Centre, NIHR Respiratory Biomedical Research Centre, University of Southampton, Southampton, UK
23Department of Otorhinolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, Berlin, Germany
24Division of Respiriology, Department of Pediatrics, University Hospital Liège, Liège, Belgium
25Department of Respiratory Diseases, University Hospitals Leuven, Leuven, Belgium
26Department of Pediatric Pulmonology, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
27Department of Otorhinolaryngology, University Hospital of Liège, Liège, Belgium
28Biomedical Sciences Department, CEU-Cardenal Herrera University, Castellón, Spain
29Medical School, University of Cyprus, Nicosia, Cyprus
30Pediatric Pulmonology Unit, Hospital ‘Archbishop Makarios III’, Nicosia, Cyprus
31Paediatric Respiratory Medicine, Children’s University Hospital of Bern, University of Bern, Bern, Switzerland

*On behalf of the EPIC-PCD team

https://doi.org/10.21053/ceo.2023.01130

This is an open-access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (https://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

page 1 of 6
Sinonasal and otologic symptoms are common among patients with primary ciliary dyskinesia (PCD) of all ages [1-3]. Since most PCD symptoms are nonspecific, patients with PCD may learn to live with their symptoms or perceive them as unbothersome; thus, they underreport symptoms during clinical visits. Yet, objective tests possibly fail to capture the true burden of sinonasal and otologic disease in daily life. To inform decision-making during ENT specialist clinical follow-up, we assessed correlations between patient- and parent-reported ENT symptoms and objective measurements of ENT disease among patients with PCD.

We assessed agreement between patient- or parent-reported ENT symptoms and ENT consultation outcomes, indicating disease (agreement yes); no disease (agreement no); and disagreement (reference category). Agreement for no disease between reported ear pain and acute otitis media (AOM) or otitis media with effusion (OME) on examination; (5) reported ear discharge and ear discharge on examination; (2) reported blocked nose and nasal polyps or hypertrophic turbinates; (3) reported headache while bending down and facial pain at examination; (4) reported ear pain and acute otitis media (AOM) or otitis media with effusion (OME) on examination; (5) reported ear discharge and ear discharge on examination; (6) reported hearing problems and impairment on audiometry. We studied whether age, sex, and center were associated with agreement using multinomial logistic regression. The models provided three possible patient and examination outcomes, indicating disease (agreement yes); no disease (agreement no); and disagreement (reference category).

We included 404 participants from 12 centers (Table 1) with a median age of 15 years (interquartile range [IQR], 9–22 years; female, n=187 [46%]) and a median age at diagnosis of 9 years (IQR, 3–17 years). Table 1 shows the prevalence of patient-reported symptoms and clinical examination findings. Audiometry results were available for 280 participants.

We found no correlations for most patient-reported symptom and examination combinations we tested (Fig. 1). Underreporting varied by symptom and was higher for blocked (23%) or runny (25%) nose. Reported ear discharge correlated poorly with ear discharge at examination (kappa 0.28; 95% confidence interval [CI], 0.18–0.37). From the tested combinations, reported hearing problems correlated best with audiometry results; however, the correlation remained weak (kappa 0.41; 95% CI, 0.30–0.52). We performed sensitivity analyses assessing examination findings with frequent (reported daily or often) instead of prevalent symptoms; no improvement in the correlations was found (data available from authors).

We assessed age, sex, and center as possible determinants of agreement. Agreement for no disease between reported ear pain and AOM or OME (relative risk ratio [RRR], 1.0; 95% CI, 0.9–1.0 for each year increase) increased with age and was higher among participants in Cyprus and Istanbul. Age did not play a role in agreement for other reported symptoms and examination findings. Agreement regarding no hearing impairment from a comparison of reported hearing problems and audiometry results was higher among participants in Istanbul (RRR, 9.8; 95% CI, 3.1–31.2) compared with the Netherlands (reference category); agreement about hearing impairment was higher among participants from the United Kingdom (RRR, 8.8; 95% CI, 1.9–41.0). Sex did not appear to play a role in agreement. We found
no correlation between patient-reported sinonasal symptoms and relevant clinical examination findings. Otolologic symptoms correlated poorly or weakly with otoscopy and audiometry findings. Nonetheless, we identified age and center as agreement determinants.

Our study is the first to assess potential correlations between patient- and parent-reported symptoms with objective measurements among patients with PCD. Previous clinical studies related to ENT disease among patients with PCD included non-standardized symptom information extracted from medical charts, precluding direct comparisons [3,11,12]. A prospective study in the United States found that nasal congestion and runny nose reported by adults with postsurgical chronic rhinosinusitis (CRS) correlated with nasal endoscopy scores [13]. A large Korean study among adults found an association between reported hyposmia or anosmia and nasal endoscopy findings indicative of CRS (mainly nasal polyps and mucopurulent discharge in middle meatus) and symptom combinations with stronger associations compared with individual symptoms [14]. Correlation from using composite outcomes [10] or endoscopy scores [11] or studying different participant age ranges possibly explains the variation in findings [15,16]. Follow-up and examination techniques or the cultural acceptance of some symptoms also possibly account for differences among centers.

The reporting of standardized symptom and examination findings and the large number of participants for a rare disease strengthened our study. Despite PCD symptom chronicity, a limitation of this study is that it analyzed patient-reported symptoms from the previous 3 months—not just the examination day—which may be linked to weaker correlations. Otolologic symptoms among children are difficult for parents to evaluate, which possibly explains the role of age as an agreement determinant [17,18]. Although patients with longer follow-up might evaluate their symptoms more accurately, we did not collect such information.

Many participants appeared to underestimate and underreport their symptoms, to which they grew accustomed over time, while

Table 1. Characteristics of EPIC-PCD participants, overall and by age group (n=404)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Total</th>
<th>Age 0–6 yr</th>
<th>Age 7–14 yr</th>
<th>Age 15–30 yr</th>
<th>Age 31–50 yr</th>
<th>Age >50 yr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of participants</td>
<td>404 (100)</td>
<td>45 (100)</td>
<td>131 (100)</td>
<td>163 (100)</td>
<td>42 (100)</td>
<td>23 (100)</td>
</tr>
<tr>
<td>Age (yr)</td>
<td>15 (9–22)</td>
<td>4 (2–5)</td>
<td>10 (8–12)</td>
<td>18 (16–22)</td>
<td>37 (34–42)</td>
<td>57 (56–62)</td>
</tr>
<tr>
<td>Female sex</td>
<td>187 (46)</td>
<td>21 (47)</td>
<td>59 (45)</td>
<td>77 (47)</td>
<td>18 (43)</td>
<td>12 (52)</td>
</tr>
<tr>
<td>Age at PCD diagnosis (yr)</td>
<td>9 (3–17)</td>
<td>1 (0–2)</td>
<td>6 (1–8)</td>
<td>13 (8–17)</td>
<td>34 (29–36)</td>
<td>51 (43–55)</td>
</tr>
</tbody>
</table>

Cardiovascular malformation

<table>
<thead>
<tr>
<th>Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>35 (9)</td>
</tr>
<tr>
<td>No</td>
<td>303 (75)</td>
</tr>
<tr>
<td>Not reported</td>
<td>66 (16)</td>
</tr>
</tbody>
</table>

Patient-/parent-reported symptom^a^b^c^d^e^

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Runny nose</td>
<td>248 (61)</td>
</tr>
<tr>
<td>Blocked nose</td>
<td>242 (60)</td>
</tr>
<tr>
<td>Headache while bending down</td>
<td>44 (11)</td>
</tr>
<tr>
<td>Ear pain</td>
<td>207 (51)</td>
</tr>
<tr>
<td>Ear discharge</td>
<td>109 (27)</td>
</tr>
<tr>
<td>Hearing problems (n=280)^f^</td>
<td>133 (48)</td>
</tr>
</tbody>
</table>

Examination findings

<table>
<thead>
<tr>
<th>Symptom</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nasal discharge</td>
<td>300 (74)</td>
</tr>
<tr>
<td>Nasal polyps^c^</td>
<td>55 (14)</td>
</tr>
<tr>
<td>Hypertrophic turbinates^c^</td>
<td>222 (55)</td>
</tr>
<tr>
<td>Facial pain</td>
<td>53 (13)</td>
</tr>
<tr>
<td>Acute otitis media</td>
<td>6 (1)</td>
</tr>
<tr>
<td>Otitis media with effusion</td>
<td>122 (30)</td>
</tr>
<tr>
<td>Ear discharge</td>
<td>36 (9)</td>
</tr>
<tr>
<td>Hearing loss measured at audiometry (n=280)^g^</td>
<td>119 (43)</td>
</tr>
</tbody>
</table>

Values are presented as number (%) or median (interquartile range).

EPIC-PCD, ENT Prospective International Cohort of Patients with Primary Ciliary Dyskinesia.

^a^Ever reported at any frequency during the past 3 months. ^b^All % refer to 280 participants with available audiometry results. ^c^Bilateral or unilateral.

^d^Hearing loss measured at audiometry ranging from mild to profound based on the World Health Organization grade—could be bilateral or unilateral.

Lam YT et al. No Correlation of Symptoms and Examinations in PCD page 3 of 6
others showed increased perception, noticing their impaired quality of life and reported symptoms in more detail. For these reasons, our findings necessitate regular ENT consultations for all people with PCD. This approach possesses possible therapeutic implications, especially for hearing impairment and nasal polyp diagnoses, both with highly underreported symptoms. Patient-reported measures complement objective measures since findings from clinical examinations vary with time. Symptom combinations or quality-of-life measures might be more closely associated with examination findings.

CONFLICT OF INTEREST

JFP reports personal fees from Sanofi, GSK, Medtronic and ALK outside the submitted work. MB reports grants from Forton grant (King Baudouin Foundation) 2020-J1810150-217926 Cystic fibrosis research and personal fees from Vertex outside the submitted work. JR received grants and clinical study recompensations from Vertex, INSMED, Medical Research Council/UK, BMBF, Mukoviszidose Institut outside the submitted work. ALMLP received speaker honorarium from GSK and Sanofi outside the submitted work. NL received honoraria to her institution from GSK, INSMED, AN2 Therapeutics outside the submitted work and a travel grant from Pfizer.

ACKNOWLEDGMENTS

We want to thank all the people with primary ciliary dyskinesia (PCD) in the cohort and their families, and the PCD support organisations (especially, PCD Family Support Group UK; Association ADCP France; Kartagener Syndrom und Primäre Ciliäre Dyskinesie e. V. Deutschland/Deutschschweiz; Asociación Nacional de Pacientes con Discinesia Ciliar Primaria DCP España/PCD Spain) for their close collaboration. We also thank all the researchers at participating centres who are involved in enrolment, data collection and data entry, and work closely with us through the whole process of participating in the cohort (listed in alphabetical order): Dilber Ademhan (Hacettepe University, Turkey), Lionel Benchimol (University Hospital of Liège, Belgium), Achim G Beule (University of Münster, Germany), Irma Bon (Vrije Universiteit, the Netherlands), Marina Bullo (University of Bern, Switzerland), Carmen Casaulta (University of Bern, Switzerland), Marco Caversaccio (University of Bern, Switzerland), Bruno Crestani (RESPIRARE, France), Sandra Diepenhorst (Vrije Universiteit, The Netherlands), Pinar Ergenekon (Marmara University, Turkey), Nathalie Feyaerts (University Hospitals Leuven, Belgium), Gavriel Georgiou (Nicosia General Hospital, Cyprus), Amy Glen (University of Southampton, UK), Lilia Marianne Hartung (Charité-Universitätsmedizin Berlin, Germany), Simone Helms (University of Münster, Germany), Sara-Lynn Hool (University of Bern, Switzerland), Isabelle Honoré (RESPIRARE, France), Symne Kennelly (University of Oslo, Norway), Elisabeth Kieninger (University of Bern, Switzerland), Panayiotis Kouis (University of Cyprus, Cyprus), Philipp Latzín (University of Bern, Switzerland), Marie Legendre (RESPIRARE, France), Jane S Lucas (University of Southampton, UK), Bernard Maitre (RESPIRARE, France), Alison McEvoy (University of Southampton, UK), Rana Mitri-Frangieh (RESPIRARE, France), David Montani (RESPIRARE, France), Loretta Müller (University of Bern, Switzerland), Noelia Muñoz (La Fe University and Polytechnic Hospital, Spain), Heymut Omran (University of Münster, Germany), Beste Ozsezen (Hacettepe University, Turkey), Sa-
The study was supported by a Swiss National Science Foundation Ambizione fellowship (PZ00P3_185923) granted to M Goutaki. The authors participate in the BEAT-PCD (Better Experimental Approaches to Treat Primary Ciliary Dyskinesia) clinical research collaboration, supported by the European Respiratory Society, and most centers participate in the ERN-LUNG (European Reference Network on rare respiratory diseases) PCD core.

ORCID

Yin Ting Lam
https://orcid.org/0000-0002-2380-834X

Jean-François Papon
https://orcid.org/0000-0002-2323-9239

Mihaela Alexandru
https://orcid.org/0000-0001-5134-7344

Andreas Anagiotos
https://orcid.org/0000-0002-2314-0263

Miguel Armengot
https://orcid.org/0000-0001-8258-6292

Mieke Boon
https://orcid.org/0000-0001-8138-5405

Andrea Burgess
https://orcid.org/0000-0001-8223-9143

Nathalie Caversaccio
https://orcid.org/0000-0002-0237-3228

Suzanne Crowley
https://orcid.org/0000-0003-2786-8718

Sinan Ahmed D. Dheyauldeen
https://orcid.org/0000-0003-6423-3248

Nagehan Emiralioglu
https://orcid.org/0000-0001-8829-3431

Ela Erdem
https://orcid.org/0000-0002-0853-7905

Christine van Gogh
https://orcid.org/0000-0003-1260-7248

Yasemin Gokdemir
https://orcid.org/0000-0002-1389-9994

Onder Gunaydin
https://orcid.org/0000-0003-1303-1423

Eric G. Haarman
https://orcid.org/0000-0002-6953-7370

Amanda Harris
https://orcid.org/0000-0000-3766-0705

Isolde Hayn
https://orcid.org/0000-0007-6484-2185

Hasnaya Ismail-Koch
https://orcid.org/0000-0003-0665-8871

Bulent Karadag
https://orcid.org/0000-0001-9681-3978

Céline Kempeeneers
https://orcid.org/0000-0001-4810-4535

Sookyung Kim
https://orcid.org/0000-0002-2653-5885

Natalie Lorent
https://orcid.org/0000-0003-1587-5216

Ugur Ozelik
https://orcid.org/0000-0002-8636-9214

Charlotte Pioch
https://orcid.org/0000-0002-1247-2334

Ana Reula
https://orcid.org/0000-0002-1348-7917

Jobst Roehmehl
https://orcid.org/0000-0002-1535-8852

Panayiotis Yallouros
https://orcid.org/0000-0002-8339-9285

Myrofon Goutaki
https://orcid.org/0000-0001-8036-2092

AUTHOR CONTRIBUTIONS

Conceptualization: MG, JFP. Methodology: YTL, MG, JFP. Formal analysis: YTL, MG. Data curation: YTL, MG. Investigation: all authors. Funding acquisition: MG. Writing–original draft: YTL, MG. Writing–review & editing: all authors.

REFERENCES

